Homoclinic saddle to saddle-focus transitions in 4D systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation of Homoclinic Orbits to a Saddle-Focus in Reversible Systems with SO(2)-Symmetry

We study reversible, SO(2)-invariant vector fields in R depending on a real parameter = which possess for ==0 a primary family of homoclinic orbits T:H0 , : # S. Under a transversality condition with respect to = the existence of homoclinic n-pulse solutions is demonstrated for a sequence of parameter values = (n) k 0 for k . The existence of cascades of 2 3-pulse solutions follows by showing t...

متن کامل

Homoclinic saddle-node bifurcations in singularly perturbed systems

In this paper we study the creation of homoclinic orbits by saddle-node bifurca-tions. Inspired on similar phenomena appearing in the analysis of so-calledìocalized structures' in modulation or amplitude equations, we consider a family of nearly in-tegrable, singularly perturbed three dimensional vector elds with two bifurcation parameters a and b. The O(") perturbation destroys a manifold cons...

متن کامل

Homoclinic Orbits in Saddle-center Reversible Hamiltonian Systems

We study the existence of homoclic solutions for reversible Hamiltonian systems taking the family of differential equations u + au′′ − u + f(u, b) = 0 as a model. Here f is an analytic function and a, b real parameters. These equations are important in several physical situations such as solitons and in the existence of “finite energy” stationary states of partial differential equations. We red...

متن کامل

Homoclinic Bifurcations that Give Rise to Heterodimensional Cycles near A Saddle-Focus Equilibrium

We show that heterodimensional cycles can be born at the bifurcations of a pair of homoclinic loops to a saddle-focus equilibrium for flows in dimension 4 and higher. In addition to the classical heterodimensional connection between two periodic orbits, we found, in intermediate steps, two new types of heterodimensional connections: one is a heteroclinic between a homoclinic loop and a periodic...

متن کامل

Periodically Forced Double Homoclinic Loops to a Dissipative Saddle

In this paper we present a comprehensive theory on the dynamics of strange attractors in periodically perturbed second order differential equations assuming that the unperturbed equations have two homoclinic loops to a dissipative saddle fixed point. We prove the existence of many complicated dynamical objects for given equations, ranging from attractive quasi-periodic torus, to Newhouse sinks ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2019

ISSN: 0951-7715,1361-6544

DOI: 10.1088/1361-6544/ab0041